
Journal of Mathematical Chemistry 21 (1997) 223–260 223

Embedding with a rigid substructure
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This paper presents a new distance geometry algorithm for calculating atomic coordinates
from estimates of the interatomic distances, which maintains the positions of the atoms in a
known rigid substructure. Given an M×3 matrix of coordinates X for the rigid substructure,
this problem consists of finding the N × 3 matrix Y which yields the global minimum of
the so-called STRAIN, i.e.,

min
Y

∥∥∥∥[XX> XY>

YX> YY>

]
−
[

A B
B> C

]∥∥∥∥2

F

,

where A = XX>, and B, C are matrices of inner products calculated from the estimated
distances.

The vanishing of the gradient of the STRAIN is shown to be equivalent to a system
of only six nonlinear equations in six unknowns for the inertial tensor associated with the
solution Y. The entire solution space is characterized in terms of the geometry of the
intersection curves between the unit sphere and certain variable ellipsoids. Upon deriving
tight bilateral bounds on the moments of inertia of any possible solution, we construct a
search procedure that reliably locates the global minimum. The effectiveness of this method
is demonstrated on realistic simulated and chemical test problems.

1. Introduction

Distance geometry is widely used in the generation of three-dimensional atomic
coordinates from chemical diagrams [7], in the determination of conformation from
NMR data [17], in the modeling of protein structure by homology [16], and in docking
ligands in their receptor’s binding site [4]. More generally, distance geometry is a
formalism within which a large variety of conformational problems can be stated in
purely geometric terms [9]. Solving these problems generally involves finding three-
dimensional coordinates that satisfy given lower and upper bounds on the interatomic
distances. In contrast to relatively complex models of the intramolecular potential
energy, this simple geometric problem formulation makes it possible to use rigorous
mathematical techniques to assist the search for globally optimal solutions.

The most important of these mathematical techniques is the EMBED algorithm,
which rapidly finds coordinates that closely fit the distance bounds [8]. As explained in
the next section, these coordinates are the global minimum of a certain matrix optimiza-
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tion problem, which can be reliably located by eigenvalue methods. The availability
of such good starting coordinates greatly improves the efficiency and convergence
properties of their subsequent nonlinear optimization versus an error function, which
measures the violations of the distance bounds [15]. One shortcoming of the EMBED
algorithm is that there is no good way to weight the distances according to their pre-
cision, or exactly realize rigid substructures even when they are known in advance.
This shortcoming is particularly serious in problems with large rigid substructures, as
in the docking of a ligand to a receptor protein of known structure, or in building the
loops and sidechains of a protein onto a backbone obtained via homology modeling.

In this paper we formulate a new minimization criterion which fixes the positions
of the atoms in a known rigid substructure. It may be regarded as a block matrix
extension of the EMBED algorithm. We derive the necessary conditions for an optimal
solution in the form of a nonlinear matrix equation. By considering the inertial tensor
associated with a solution matrix, it is possible to transform this matrix equation into a
system of six nonlinear equations among the three eigenvalues and three eigenvectors
of the inertial tensor. The solutions to this reduced nonlinear system are characterized
in terms of the intersection curves between variable ellipsoids and the unit sphere:
each eigenvector lies on the intersection curve associated with a given eigenvalue.

Following the establishment of the intersection conditions, we derive sharp
bounds on a six-dimensional subspace containing all possible inertial tensors of in-
terest, and in particular the inertial tensor of the global minimum. These bounds,
together with an explicit parametrization of the intersection curves and the symmetries
in the equations, are used to construct a specialized search procedure that systemati-
cally samples this subspace in order to extract a set of approximate solutions to the
equations. We then refine this set of approximate solutions by means of iterative meth-
ods specifically designed for this task. The outcome is, in general, a rather small set
of distinct solutions from which the global minimum is found by simply comparing
their function values. The entire algorithm is evaluated on a realistic set of simu-
lated and chemical test problems, which demonstrate its effectiveness in solving the
above-mentioned conformational problems.

2. Background and problem formulation

We begin with some necessary background on the EMBED algorithm. Suppose
we have estimates of all the interatomic distances [dij] in a structure, and we wish to
find a matrix of three-dimensional coordinates X = [x1, . . . , xM ]> ∈ RM×3 for the M
atoms such that the distances calculated from the coordinates ‖xi− xj‖ in some sense
closely match their estimated values. The obvious way to do this is to minimize the
weighted STRESS function

M ,M∑
1=i<j

(
wij
[
‖xi − xj‖ − dij

])2
, (1)
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or SSTRESS function
M ,M∑
1=i<j

(
wij
[
‖xi − xj‖2 −Dij

])2
, (2)

with respect to the coordinates, where Dij ≡ d2
ij and wij > 0 are weights.

Although this can certainly be done [21], it turns out that another function, called
the STRAIN, has nicer mathematical properties. To explain this, we expand equation (2)
as

4
M ,M∑

1=i<j

w2
ij

[
(xi · xj)−

(
‖xi‖2 + ‖xj‖2 −Dij

)
/2
]2
. (3)

By the law of cosines, this can be regarded as four times the weighted sum of the
squares of the differences between the dot product xi · xj and an estimate thereof,
namely, (‖xi‖2 + ‖xj‖2 −Dij)/2. This estimate is inconvenient since it depends on
the coordinates we are trying to calculate. An estimate that is independent of the
coordinates may be obtained from the following formula, which gives the squared
distances to the center of mass of the configuration, M−1∑

jmjxj , where M ≡∑
jmj , in terms of the squared distances among the atoms:

D0i = M
−1

M∑
j=1

mjDij −M
−2

M ,M∑
1=j<k

mjmkDjk. (4)

It is straightforward to show that when Dij = ‖xi − xj‖2 for some set of center of
mass coordinates, the estimate D0i is exact, i.e., D0i = ‖xi‖2 [8]. Moreover, because
equation (4) is an averaging procedure, the D0i obtained from it are quite insensitive
to errors in the Dij .

The complete matrix of dot products between all pairs of coordinate vectors, or
Gram matrix, is readily calculated from the coordinates as

XX> = [xi · xj]M ,M
i,j=1 .

If the coordinates X are center of mass coordinates and

D = [Dij]
M ,M
i,j=1 =

[
‖xi − xj‖2]M ,M

i,j=1 ,

then it can also be written as

XX> =
[
(D0i +D0j −Dij)/2

]M ,M
i,j=1 .

Let I be an identity matrix, 1 a column vector of ones, and m = [m1, . . . ,mM ]>.
Then this transformation from matrices of squared distances to Gram matrices can be
written succinctly (see [13]) as

XX> = −1
2

[
I−

(
1m>

)
/M

]
D
[
I−

(
m1>

)
/M

]
. (5)
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The mathematical equivalent of the Gram matrix in statistics is the well known co-
variance matrix.

If the Dij are only inexact estimates of the actual squared distances ‖xi − xj‖2,
we can calculate an estimate of the corresponding Gram matrix as

A = [aij]
M ,M
i,j=1 =

[
(D0i +D0j −Dij)/2

]M ,M
i,j=1 .

The STRAIN may then be defined as

M ,M∑
i,j=1

(
wij
[
(xi · xj)− aij

])2
=
∥∥W •

[
XX> − A

]∥∥2
F, (6)

where ‖C‖2
F =

∑
ij c

2
ij denotes the squared Frobenius norm of a matrix C, while

W = [wij]
M ,M
i,j=1 is a matrix of weights and the “•” denotes the Hadamard (or entry-

by-entry) matrix product.
This problem of minimizing the STRAIN does not have a simple solution for

arbitrary weights, but if wij = mimj for some assignment of masses to the atoms,
equation (6) can be written as ∥∥M

[
XX> − A

]
M
∥∥2

F,

where M = diag(m) is a nonsingular diagonal matrix containing the masses. The mass-
weighted Gram matrix M[XX>]M is also a positive semi-definite rank three matrix.
Assuming that the matrix MAM also has at least three nonnegative eigenvalues (as is
almost always the case in practice), we shall denote its three largest eigenvalues by
λ1 > λ2 > λ3 > 0, and their corresponding eigenvectors by u1, u2, u3. Then a classical
theorem due to Sylvester, Eckart and Young on fixed-rank matrix approximations shows
that the STRAIN is minimized by the coordinates

X∗ = M−1[λ1/2
1 u1,λ1/2

2 u2,λ1/2
3 u3

]
(see [11]). In chemistry, this calculation is known as the EMBED algorithm [9]. It
should be noted that a variety of reliable iterative methods exist for finding the three
largest eigenvalues and associated eigenvectors of the symmetric positive semidefinite
matrix MAM in far less time than would be needed to fully diagonalize it.

We shall now formulate the main problem of this paper, namely embedding with
a rigid substructure. Suppose that we know the 3D coordinates of a subset of M
atoms X, and that we wish to find 3D coordinates Y for the remaining N atoms so
as to minimize the overall STRAIN, regarded as a function of Y alone. If we order
the atoms appropriately, we may partition the Gram matrix into four submatrices and
write this function as

f (Y) =
1
2

∥∥∥∥[WA WB

W>B Wc

]
•
([

XX> XY>

YX> YY>

]
−
[

A B
B> C

])∥∥∥∥2

F
, (7)
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where A ∈ RM×M , B ∈ RM×N , C ∈ RN×N , while the matrices of weights satisfy
WA, WB , WC > 0. Since A = XX> by definition, equation (7) may be expanded and
simplified as

f (Y) =
∥∥WB •

[
XY> − B

]∥∥2
F +

1
2

∥∥WC •
[
YY> − C

]∥∥2
F, (8)

which shows that WA is irrelevant.
Before turning to the development of methods for finding the global minimum

of the STRAIN function in equation (8), we list two assumptions. First, the entries
in Y are independent. Second, we shall consider only the unweighted problem, i.e.,
wij = 1 in both WB and WC . It should be straightforward to extend our methods to the
special case of multiplicative weights satisfying wij = mimj , which may prove useful
in some applications. The problem involving general weights will not be addressed in
this paper.

3. First-order optimality conditions

3.1. The nonlinear matrix equation

We begin by deriving the first-order optimality conditions for the minimization
of the unweighted STRAIN function

min
Y

(
f (Y)

)
= min

Y

(∥∥XY> − B
∥∥2

F +
1
2

∥∥YY> −C
∥∥2

F

)
. (9)

In the following, we let GY = X>X + Y>Y ∈ R3×3, so that G0 = X>X, and
V = B>X ∈ RN×3. Because GY is simply related to the usual inertial tensor, i.e.,
tr(GY)I3 −GY, we shall often refer to it as the inertial tensor. A matrix Yc at which
the gradient ∇f (Yc) = 0 shall be called a critical matrix.

Theorem 1. A critical matrix satisfies the nonlinear matrix equation

YGY − CY−V = 0. (10)

Among all critical matrices Yc, the one which maximizes the quantity

tr
(
Y>c V

)
+

1
2

tr
([

Y>c Yc

]2)
(11)

is the global minimum of f .

Proof. Expanding equation (9) yields

f (Y) = tr
([

XY> − B
]>[XY> − B

])
+

1
2

tr
([

YY> − C
]>[YY> − C

])
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= tr
(

B>B +
1
2

C2
)
− tr

(
[2V + CY]Y>

)
+ tr

(
YGYY> − 1

2
YY>YY>

)
. (12)

The gradient ∇f (Y) can be arranged in the same matrix form as Y, namely,

∇f (Y) ≡ ∂f

∂Y
≡

 ∂f/∂y11 ∂f/∂y12 ∂f/∂y13

· · · · · · · · ·
∂f/∂yN1 ∂f/∂yN2 ∂f/∂yN3

 , (13)

which facilitates the calculation of the gradients of matrix functions [14]. In particular,
the matrix of ∇ tr(M>N) with respect to M is

∂ tr(M>N)
∂M

=
∂ tr(N>M)

∂M
= N (14)

for any two conformable matrices M and N. If we differentiate each term in equa-
tion (12), using both equation (14) and the rule for differentiating a matrix product
[14], and then simplify using the invariance of the trace of a matrix product under
cyclic permutations, we obtain equation (10).

Given a solution Yc of equation (10), we may replace YGY in the last term of
equation (12) with CYc + V and simplify to get

f (Yc) = tr
(

B>B +
1
2

C2
)
− tr

(
Y>c V

)
− 1

2
tr
([

Y>c Yc

]2)
, (15)

thus showing why the quantity in equation (11) must be maximized. �

Two comments are in order. First, because GY = X>X + Y>Y, equation (10)
constitutes a system of 3N cubic equations in the entries of Y. The direct solution of
equation (10) does not appear theoretically or computationally feasible, and alternative
approaches are essential if the global minimum is to be found. Second, if there are no
fixed coordinates, then equation (10) becomes

CY = YGY. (16)

The matrix GY = Y>Y is a 3 × 3 symmetric positive-definite matrix whose spectral
decomposition is denoted by GY = RΓR>, γk being the kth diagonal entry in Γ and
k = 1, 2, 3. If one defines Ŷ = YR, so that ŷk is its kth column, then equation (16)
becomes CŶ = ŶΓ or Cŷk = ŷkγk. Thus each ŷk is proportional to an eigenvector
of C, and since Γ = Ŷ>Ŷ the constants of proportionality must be

√
γk. Finally,

f (Y) = f (Ŷ) is minimized when

tr
([

Ŷ>Ŷ
]2)

=
∑
k

γ2
k

is maximized. This is the theorem of Sylvester, Eckart and Young mentioned in
section 2.
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3.2. Equations for the inertial tensor

In this section we derive a new system of equations and show its relation to
the matrix equation (10). The result is that the number of variables needed to solve
the minimization problem is dramatically reduced from 3N to 6. We start from the
spectral factorization of the 3 × 3 inertial tensor GY,

GY = G0 + Y>Y = RΓR>, (17)

order the diagonal entries of Γ as γ1 > γ2 > γ3 > 0 and, if necessary, change the
signs of the columns of R = [r1, r2, r3] so that it is a proper orthogonal matrix. The
twelve unknown entries in Γ and R will be the main variables throughout the rest
of this paper. It turns out that a few largest eigenvalues of the symmetric matrix C
play a significant role, so we will write its spectral factorization as C = QΣQ> with
the diagonal entries of Σ ordered as σ1 > σ2 > · · · > σN while Q is an orthogonal
matrix. We shall use standard notation for the Kronecker delta δkl, and I (or IN ) for
the N × N identity matrix. We now define an N × 3 matrix W = Q>V whose ith
row is denoted by w>i , and two kinds of 3 × 3 variable symmetric matrices that will
frequently occur, namely, a univariate one,

S(γ) = G0 + W>[γI− Σ]−2W = G0 +
N∑
i=1

wiw>i
(γ − σi)2 , (18)

and a bivariate one

S(γ, δ) = G0 + W>
(
[γI− Σ]−1[δI − Σ]−1)W

= G0 +
N∑
i=1

wiw>i
(γ − σi)(δ − σi)

. (19)

Theorem 2. If Yc is a critical matrix of f , then the eigenvalues and eigenvectors
{γ1, r1; γ2, r2; γ3, r3} of the associated inertial tensor GYc satisfy the system of six
equations

γk − r>k S(γk)rk = 0, k = 1, 2, 3,

r>k S(γk, γl)rl = 0, 1 6 k < l 6 3,
(20)

as well as the six orthonormality conditions

r>k rl = δkl. (21)

Proof. The orthonormality relations (21) hold for the eigenvectors of any symmetric
matrix. By premultiplying each eigenvector equation GYrk = γkrk by r>l , we observe
that there are only six distinct such products for 1 6 k 6 l 6 3. These products are
equivalent, by equations (17) and (21), to the following system of six equations:

δklγk = r>k GYrl = r>k G0rl + (Yrk)>(Yrl). (22)
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To obtain an expression for Ycrk we multiply equation (10) with the matrix R and
substitute equation (17) for GY. The result is YcRΓ = CYcR+VR which is equivalent
to the three vector equations (γkI−C)Ycrk = Vrk, one for each column of R, whose
formal solutions are given by

Ycrk = [γkI− C]−1Vrk, k = 1, 2, 3. (23)

Substitution of equation (23) into equation (22) and rearrangement results in

δklγk − r>k
[
G0 + V>

(
[γkI−C]−1[γlI− C]−1)V]rl = 0. (24)

Separation of these equations into the k = l and k < l cases, and substitution of
C = QΣQ> and V = QW, now yields equations (20). �

Equations (20) and (21) can be regarded as a system of twelve equations in
the twelve unknowns {γ1, r1; γ2, r2; γ3, r3}. The six constraints in equation (21) on
the nine entries of R can be eliminated by a suitable parametrization for the 3 × 3
orthogonal matrices. Two specific parametrizations will be introduced later on, the
outcomes being two different nonlinear systems of six equations in six unknowns. We
shall often refer to equations (20) as the inertial equations, and denote them by gkl,
for 1 6 k 6 l 6 3. An eigenvalue–eigenvector pair {γk, rk} will be referred to as an
inertial pair. Each of the first three equations depends on a single inertial pair and
will be referred to as quadratic, while the last three equations, each depending on two
inertial pairs, will be referred to as bilinear.

The connection between inertial pairs satisfying equations (20)–(21) and critical
matrices Yc is that given any positive diagonal matrix Γ, such that each diagonal entry
satisfies 0 < γk 6= σi, and an arbitrary 3 × 3 orthogonal matrix R, one can compute
the matrix RΓR> and the matrix

Y =
[
(γ1I− C)−1Vr1 | (γ2I− C)−1Vr2 | (γ3I− C)−1Vr3

]
R> (25)

satisfying equation (10). In general, however, RΓR> 6= G0 + Y>Y unless the matrix
pair {Γ, R} is also a solution to equations (20), in which case Y is a critical matrix
of f . The same critical matrix is obtained for each of the eight possible choices of
signs ±rk (k = 1, 2, 3). The choice of a particular orientation will be described in
section 5.2. In the following, after computing solutions to equations (20)–(21), the
corresponding critical matrix will be constructed according to equation (25).

4. The structure of the solution space

4.1. The intersection curve between a sphere and an ellipsoid

Let g(γ, r) = 0 denote any one of the three quadratic inertial equations in (20),
with the associated matrix S(γ) defined by equation (18), and let {γ, r} denote an
inertial pair that satisfies it. A geometric characterization of all such inertial pairs
comes from the following result:
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Figure 1. The two symmetric curves in which the ellipsoid defined by the matrix S(γ)/γ intersects the
unit sphere.

Lemma 3. If an inertial pair {γ, r} satisfies the quadratic inertial equation g(γ, r) = 0,
then r is located on the intersection curve between the unit sphere and the ellipsoid
defined by the matrix S(γ)/γ.

Proof. Since γ > 0 the equation g(γ, r) = 0 can be rewritten as

r>
[

S(γ)
γ

]
r = 1. (26)

For any fixed 0 < γ 6= σi, the matrix S(γ)/γ is positive-definite by (18), and hence
any vector r that satisfies equation (26) lies on the surface of an ellipsoid centered at
the origin. As a column of an orthogonal matrix, however, the vector r also lies on
the surface of the unit sphere centered at origin. Therefore, r lies on the intersection
curve between the unit sphere and the ellipsoid defined by γ via equation (26) (see
figure 1). �

It is well known that the spectral factorization of S(γ)/γ = UΛU> determines
the principal axes of this ellipsoid as the three eigenvectors in U, while the three
eigenvalues 0 < λ3 6 λ2 6 λ1 are the reciprocal squares of the three semiaxes. It
is also evident from equations (18) and (26) that both Λ = Λ(γ) and U = U(γ) are
continuous functions, except at the eigenvalues of C (see also [19]). Therefore, the
problem of existence of an intersection curve, henceforth denoted by r(γ), consists of
finding intervals of γ over which the quadratic vector equation (26) has real solutions.
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Since the ellipsoid and the unit sphere are centrally symmetric convex surfaces, the
necessary and sufficient condition for their intersection is

λ3(γ) 6 1 6 λ1(γ). (27)

In other words, there is no intersection if all semiaxes are strictly greater, or strictly
smaller, than the radius of the sphere.

By the central symmetry of both surfaces, the intersection consists of a symmetri-
cal pair of (nonintersecting) closed spherical curves, related to each other by reflection
in the origin. The curves are symmetric with respect to all three axes, but we shall
be mostly interested in the axis of symmetry along which piercing of surfaces occurs:
u1 if λ2(γ) < 1, or u3 if 1 < λ2(γ). We shall label this axis vector by uk, and the
other two axes by ui and uj , so that k = 1 implies (i, j) = (2, 3) while k = 3 implies
(i, j) = (1, 2). At a bifurcation point γb, which is defined by the nonlinear equation

λ2(γb) = 1, (28)

the two intersection curves merge at the points ±u2 while the axis of symmetry for
both curves undergoes a discontinuous change to u2.

The following lemma shows how the explicit analytic parametrization of the
intersection curve depends on the axis of symmetry.

Lemma 4. The projection of both intersection curves onto the central plane orthogonal
to the axis of symmetry uk is an ellipse, whose semiaxes are given by

βi(γ) =
√

(λk − 1)/(λk − λi),

βj(γ) =
√

(λk − 1)/(λk − λj).
(29)

Any regular parametrization of an ellipse can be chosen to parametrize the intersection
curve. We shall use the trigonometric one given by

ξi = βi(γ) cos(ψ),

ξj = βj(γ) sin(ψ),

ξk = ±
√

1− ξ2
i − ξ2

j ,

(30)

for ψ ∈ [0, 2π). The vector ξ(γ,ψ) = [ξ1(γ,ψ), ξ2(γ,ψ), ξ3(γ,ψ)]> is the representa-
tion of the intersection curve with respect to the principal axes, while its representation
with respect to the standard axes is given by

r(γ,ψ) = U(γ)ξ(γ,ψ). (31)
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Figure 2. The shape of the intersection curves due to the narrow ellipsoids near a bifurcation point.

Proof. If we write the equations for the unit sphere and the ellipsoid in the principal
axis coordinates ξ of the ellipsoid, and then eliminate the coordinate ξk from these
equations, we get (

λk − λi
λk − 1

)
ξ2
i +

(
λk − λj
λk − 1

)
ξ2
j = 1. (32)

Equation (32) describes an ellipse in the plane spanned by the ith and jth eigenvector,
whose associated semiaxes are given by equation (29). If we choose an angle ψ for
the trigonometric parametrization of the ellipse, and back substitute for the eliminated
coordinate ξk, we get equation (30). The vector ξ(γ,ψ) refers to the principal axes;
transformation to the original coordinates comes from the identification U>r = ξ(γ,ψ),
which proves equation (31). �

Lemma 4 provides a simple and efficient way to compute any point on any
intersection curve where, according to lemma 3, all solutions to the inertial equations
are to be found. Since we shall also require the derivatives of r(γ,ψ) with respect
to both variables during the search for the global minimum, we should analyze the
regions where these derivatives are ill-behaved in order to prevent difficulties or even
failure of the search. Geometrically this happens if a solution is located on a set of
very small, or very narrow, intersection curves. Analytically, the small intersection
curves occur when both projected semiaxes βi(γ),βj(γ) → 0 simultaneously, which
happens when either λ1(γ)→ 1 or λ3(γ)→ 1. Narrow intersection curves occur when
the projected eccentricity min((βi/βj ), (βj/βi)) � 1. Almost all such cases occur
in the vicinity of those bifurcation points that have a very small angle between the
intersection curves (see figure 2).
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To compute this angle α, we eliminate ξ2 from the equations for an ellipsoid and
the unit sphere, set λ2(γb) = 1, and obtain

tan
(α

2

)
=
ξ1

ξ3
= ±

√
1− λ3(γb)
λ1(γb)− 1

. (33)

This shows that the very small angles are caused by either λ3(γb) being very close
to 1 (which is also a near-tangency case), or by λ1(γb) � 1 (which happens when a
bifurcation point is very close to an eigenvalue σk), or both.

4.2. Spherical bounds on the moments of inertia

Let {γ, r} be an unknown inertial pair satisfying the quadratic equation
g(γ, r) = 0. Since r is confined to the unit sphere, it is of great interest to find an
upper bound on γ > 0 as well as a better lower bound, because such bounds would
reduce the size of the subspace over which the search for the global minimum takes
place. The notation λmax(·) and λmin(·) stands for the maximal and minimal eigenvalue
of the argument matrix (e.g., from equation (26), λmax(S(γ)) = γλ1(γ)).

Theorem 5. Let γ+ be the maximal solution of the nonlinear equation

γ = λmax
(
S(γ)

)
. (34)

Then the largest eigenvalue γ1 of the optimal inertial tensor is bounded by

max
(
σ1,λmax(G0)

)
6 γ1 6 γ+. (35)

Proof. We start by writing the quadratic inertial equation (26) as γ = r>S(γ)r. The
maximum of its right-hand side over all unit vectors r, (also known as the Rayleigh
quotient of S(γ)) is λmax(S(γ)) (see, e.g., [3]), and the resulting inequality

γ 6 max
‖r‖=1

(
r>S(γ)r

)
= λmax

(
S(γ)

)
, (36)

yields the nonlinear equation (34). If the maximal positive solution of equation (34)
exists, then it provides an upper bound on any eigenvalue γ, and in particular on the
largest one γ1.

To prove the existence of a solution to equation (34), we recall that S(γ) is a
positive-definite matrix, so that the spectral radius function

ρ(γ) = λmax
(
S(γ)

)
= λmax

(
G0 +

N∑
i=1

wiw>i
(γ − σi)2

)
(37)

is strictly positive. It is also a rational function with poles of order two at the eigen-
values of C. In the interval (σ1,∞), it is convex and decreases monotonically from
infinity at the pole σ1 to the asymptotic value of λmax(G0). We omit the proofs of
these statements, which are based on the negative and positive semi-definiteness of the
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first and second derivatives of S(γ), respectively. It follows that in the interval (σ1,∞)
there is only one solution, denoted by γ+, to the equation γ = ρ(γ), which is also the
maximal solution to the inequality γ 6 ρ(γ).

To prove the lower bound on γ1 in equation (35), consider first the case when
σ1 6 λmax(G0). Then, rewriting equation (17) as Γ = R>(G0 + Y>Y)R, we see
that γ1 = λmax((R>(G0 + Y>Y)R)) = λmax(G0 + Y>Y) > λmax(G0), by the positive
semi-definiteness of Y>Y and the positive definiteness of G0. In the case when
λmax(G0) < σ1, let {γ1, r1} be the first inertial pair satisfying the quadratic equation
(26) and proceed as follows:

γ1 = r>1

(
G0 +

N∑
i=1

wiw>i
(γ1 − σi)2

)
r1 > r>1 G0r1 +

(r>1 w1)2

(γ1 − σ1)2

> λmin(G0) +
(r>1 w1)2

(γ1 − σ1)2 . (38)

The first inequality comes from keeping only the first term under the sum (all terms
are nonnegative), while the second one comes from minimizing the Rayleigh quotient
of G0. By rewriting the final inequality in (38) as

(γ1 − σ1)3 +
(
σ1 − λmin(G0)

)
(γ − σ1)2 >

(
r>1 w1

)2

and defining δ = γ1 − σ1, we obtain the cubic inequality

δ3 +
(
σ1 − λmin(G0)

)
δ2 −

(
r>1 w1

)2 > 0. (39)

There is always one nonnegative solution to the equality in (39) (see discussion fol-
lowing equation (42)), which means that γ1 > σ1. This would complete the proof
for the lower bound in equation (35), were it not for occasional occurrence of two
negative real solutions to the inequality (39). We claim that they can be ignored since
any value between them does not lead to a global minimum. �

The inequality (35) says that there is no intersection between the variable ellipsoid
and the unit sphere as long as γ > λmax(S(γ)). The bound γ+ is the tangency point at
which intersection commences for the first time, and so we have named it the “spherical
bound”.

We shall solve equation (34) by a rational interpolation method which consists of
two iterations. An outer iteration calculates the coefficients of a rational interpolant to
the function ρ(γ) defined by equation (37), and monitors convergence to the solution
of equation (34), while an inner one computes the maximal root of a special cubic
equation similar to (39). The outer iteration interpolates ρ(γ) by the simplest rational
function having a pole of order two at σ1, namely,

ρ̂(γ) = c+
d

(γ − σ1)2 . (40)
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The coefficients c, d are computed from the interpolatory data ρi−1 = ρ(γi−1) and
ρi = ρ(γi) at the last two iterates γi−1 and γi, as

d =
ρi − ρi−1

(γi − σ1)−2 − (γi−1 − σ1)−2 , c = ρi − d

(γi − σ1)2 . (41)

The next iterate γi+1 is obtained by solving the equation γ = ρ̂(γ) to working
precision, which is the task of the inner iteration. Given the current values of the
coefficients c, d, and with the change of variable δ = γ − σ1, this equation takes on
the following form:

δ3 + (σ1 − c)δ2 − d = 0. (42)

Since ρ(γ) is a strictly decreasing function for γ > σ1, it follows from equation (41)
that d > 0 for all iterates γi−1, γi > σ1. Therefore, the cubic polynomial in equation
(42) is strictly negative at δ = 0, which guarantees that it has a single positive root.
A simple transformation of equation (42) yields the following bounds on this root:√

d

σ1 − c+
√
d/(σ1 − c)

< δ <

√
d

σ1 − c
if σ1 − c > 0,

|σ1 − c| < δ < |σ1 − c|+
d

(σ1 − c)2 if σ1 − c < 0.

(43)

For any point in the interval (43), both the first and the second derivative of the
cubic polynomial in equation (42) are positive. This means that Newton’s method
converges unconditionally and monotonically, except possibly for the first step, to the
positive root δi of equation (42). This completes the inner iteration, after which we
set γi+1 = σ1 + δi in the outer one.

By using the convexity of ρ(γ) in the interval (σ1,∞), it can be shown that this
rational interpolation procedure generates a sequence γi which converges superlinearly
to a solution of ρ(γ) = γ starting from any pair of estimates γ1, γ2 > σ1 [20]. In
practice, the convergence rate tends to be nearly quadratic since ρ̂(γ) inherits the
convexity of ρ(γ).

A good starting point for the outer iteration is obtained by computing an upper
bound on the right-hand side of equation (37) as

ρ(γ)6 λmax(G0) + λmax

(
N∑
i=1

wiw>i
(γ − σi)2

)

6 λmax(G0) +
N∑
i=1

w>i wi

(γ − σi)2 6 λmax(G0) +
‖W‖2

F

(γ − σ1)2 . (44)

The last inequality is valid for all γ ∈ (σ1,∞). On cross-multiplying and setting
δ = γ − σ1, we obtain a cubic inequality

δ3 +
(
σ1 − λmax(G0)

)
δ2 − ‖W‖2

F 6 0, (45)
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quite similar to equations (42) and (39). The maximum real solution δ0 to equation (45)
is strictly positive, so that γ1 6 γ+ 6 σ1 + δ0. The upper bound σ1 + δ0 is generally
already quite good and, together with any other point in the interval (σ1,σ1 + δ0),
provides the desired starting pair for the iteration in equations (40)–(41).

A lower bound γ− on all the eigenvalues γ is obtained by minimizing the
Rayleigh quotient in γ = r>S(γ)r. The result is

γ > λmin
(
S(γ)

)
= µ(γ). (46)

We use a rational interpolation procedure, similar to that in equations (40)–(41) to solve
for the minimum value γ− such that µ(γ−) = γ−. Knowing that γ− > λmin(G0), we
start the search for eigenvalues other than γ1 from λmin(G0). The meaning of equation
(46) is that the ellipsoid S(γ)/γ is guaranteed to have all its semiaxes less than 1 for
any γ < γ−, so there are no further intersections with the unit sphere.

4.3. Conical bounds on the moments of inertia

By definition, there are two antipodal tangency points at γ = γ+, where the
ellipsoid touches the unit sphere contained within it. As γ starts decreasing from γ+

towards σ1, so does the size of the ellipsoid, because all three semiaxes decrease. The
two intersection curves start growing until either the pole σ1 or a bifurcation point
γb is reached, if there is one in this interval. At the bifurcation point the intersection
curves meet at a single pair of antipodal points. On further decreasing the value of γ,
the curves bifurcate (switch to complementary regions defined by equation (33), see
figure 2), but now begin to shrink in size. An important property of the continuous
variations of the intersection curves r(γ) before and after γb is that they are nested, as
shown in figure 3.

Lemma 6. If there is no bifurcation point in the interval (σ1, γ+), then for any σ1 <
γ′′ < γ′ < γ+ the two intersection curves r(γ′) and r(γ′′) are nested on the spherical
surface, in the sense that (a) they do not intersect, and (b) the set of points on the unit
sphere bounded by r(γ′′) contains the set of points bounded by r(γ′), including the
initial tangency point r(γ+). If, on the other hand, there is a bifurcation point in this
interval, i.e., σ1 < γb, then the statement above continues to hold for γb < γ′′ < γ′ <
γ+, while in the domain σ1 < γ′′ < γ′ < γb the containment is reversed: the set of
points on the unit sphere bounded by r(γ′′) is contained in the set of points bounded
by any previous r(γ′) including the limit curve r(γb).

Proof. Starting with two distinct intersection curves at γ′ 6= γ′′, one assumes that
they intersect at p = r(γ′,ψ′) = r(γ′′,ψ′′). By subtracting the quadratic equation
p>S(γ′)p = γ′ from p>S(γ′′)p = γ′′ and simplifying, one gets the expression

1 =
N∑
k=1

(
w>k p

)2
(

2σk − γ′ − γ′′
(γ′ − σk)2(γ′′ − σk)2

)
, (47)
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Figure 3. A nested sequence of intersection curves defined by a decreasing sequence of γ values.

whose right hand side is always negative for any choice of σ1 < γ′, γ′′. The contra-
diction in (47) can be traced back to the assumption that the curves intersect, which
completes the proof on the nesting property. The two cases of containment are direct
consequences of the inequalities among the projected semiaxes in equation (29), before
and after the bifurcation point. �

Let χ(γ) be the maximum angle between any vector on the intersection curve
r(γ) and its axis of symmetry. In view of lemma 4, this angle is given by

χ(γ) = sin−1(max(βi,βj)
)
. (48)

We shall now determine an upper bound γ+
2 on the second eigenvalue by analyzing

this angle. To start with, it can be identified with the half-angle of the circular cone
having the same symmetry axis as r(γ) (see figure 4). Furthermore, the angle between
any two points on the intersection curve r(γ) does not exceed 2χ(γ). For that reason,
we named γ+

2 the “conical” bound. In what follows, we shall need the following
definition:

γb1 =

{
γb if σ1 < γb,
σ1 otherwise.

(49)
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Figure 4. The cone defined by the intersection curve r(γ) and its half-angle χ(γ).

Theorem 7. The second eigenvalue is bounded from above by the unique solution γ+
2

of the equation

λ1(γ) + λ2(γ) = 2 (50)

in the interval (γb1 , γ+).

Proof. By taking the sine of both sides of equation (48), followed by squaring, making
use of equation (29) (recall that the eigenvalues of the matrix S(γ)/γ are ordered as
λ3(γ) 6 λ2(γ) 6 λ1(γ)) and rearranging, we find that equation (50) is equivalent to
the condition χ(γ) = π/4 .

We now show that χ(γ) > π/4 is necessary for the orthogonality of the first two
eigenvectors. By lemma 6, the function χ(γ) is monotonically decreasing such that at
the tangency point χ(γ+) = 0, while at a bifurcation point χ(γb) = π/2, which follows
from equation (55) and the fact that max(β2,β3) = 1 at λ2 = 1 by equation (29).
If there is no bifurcation point in the interval (σ1, γ+), then σ1 acts like one because
when γ → σ1 then β2(γ) → 1 and χ(γ) → π/2. Hence, there is a unique value
γ+

2 ∈ (γb1 , γ+) at which χ(γ+
2 ) = π/4.

To show that γ+
2 is an upper bound on γ2, suppose first that the maximal eigen-

value satisfies γ1 6 γ+
2 , which does happen, though infrequently. In that case we must

also have γ2 6 γ+
2 , since γ2 6 γ1 by the ordering of the eigenvalues. In the more

frequent case when γ+
2 < γ1, assume that γ+

2 < γ2 6 γ1. Then by lemma 6, the set
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of points within the intersection curve r(γ1) is contained in the set of points within
the intersection curve r(γ2), known to satisfy 2χ(γ2) < π/2 . It follows that there is
no vector on the intersection curve r(γ1) and no vector on the intersection curve r(γ2)
that could be mutually orthogonal and thus satisfy orthogonality condition (21). This
contradiction is due to the assumption that γ+

2 < γ2 and we conclude that γ+
2 must be

an upper bound on γ2, as well as on γ3 by the ordering of the eigenvalues. �

To solve the nonlinear equation (50) we use the discretization of γ1 over the in-
terval (max(σ1,λmax(G0)), γ+

1 ) that will be described in section 6.3. Upon bracketing
the solution, we refine an initial solution by means of Newton’s method. The calcula-
tion of the requisite eigenvalue derivatives λ′1 and λ′2 is described later on (equation
(71)). This iteration is guaranteed to converge rapidly due to the monotonicity and
differentiability of the underlying function in this interval.

In summary, we have shown that γ1 ∈ (max(σ1,λmax(G0)), γ+) and γ2, γ3 ∈
(γ−, γ+

2 ) (see equation (46)). We note that we have never yet found an example in
which γ3 < σ3 at the global minimum of f . This leads to the following:

Conjecture 1. At the global minimum of f the smallest eigenvalue satisfies γ3 >
max(σ3, γ−).

The conjectural part is the case when γ− < σ3, because the other case follows
easily from the definition of γ− in equation (46). If this conjecture turns out to be
true, we will be able to further reduce the range of values accessible to the moments of
inertia and hence reduce the time needed to find the global minimum. In the absence
of a proof, we make sure that we find the global minimum by starting the search
from γ−, and accept some degradation of performance due to this less stringent lower
bound.

5. Iterative methods

5.1. The Newton–Kantorovitch method for all variables

The first method of solving Φ(Y) ≡ ∇f (Y) = 0 is based on equation (10). It is
a matrix version of the Newton–Kantorovitch method for solving operator equations
[22]. The method exhibits quadratic convergence, and we have observed very few
examples in which it fails to converge, although it may of course converge to a saddle
point, local minimum or maximum.

Given any Yn ∈ RN×3 and a perturbation matrix ∆ ∈ RN×3, we expand the
function Φ(Yn + ∆) as

Φ(Yn + ∆) = [Yn + ∆]
[
(Yn + ∆)>(Yn + ∆) + X>X

]
− C[Yn + ∆]− V

= Φ(Yn) + D∆(Φ) + O
(
‖∆‖2), (51)
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where O(‖∆‖2) denotes matrices whose norm depends at least quadratically on ‖∆‖.
The terms linear in ∆ are collected in the matrix

D∆(Φ) = ∆
[
Y>nYn + X>X

]
+ Yn∆>Yn +

[
YnY>n − C

]
∆, (52)

which is the directional or Frechet derivative of the matrix-valued function Φ evaluated
in the direction ∆ [22]. Setting the right-hand side of equation (51) to the zero matrix
and ignoring the higher-order terms, we obtain a system of 3N linear equations in the
3N unknown entries of ∆, namely,

D∆(Φ) = −Φ(Yn), (53)

whose solution ∆n is used to update the next iterate as Yn+1 = Yn + ∆n.
The perturbation matrix ∆ appears linearly in equation (52), as does ∆>, and each

is multiplied on both sides by different matrix coefficients. A system of equations of
this form is known as a general linear system. It is also known that in order to solve
it by standard LU decomposition methods it must be converted into the form

Kn col(∆) = − col
(
Φ(Yn)

)
. (54)

Here, col(·) is an operator that stacks the columns of its argument matrix into a sin-
gle column vector. The construction of the matrix Kn ∈ R3N×3N is based on the
Kronecker product ⊗, and the relation col(LMN>) = (N ⊗ L) col(M), which holds
for arbitrary conformable matrices L, M and N [14]. On applying the col operator to
equation (52) and using this relation, we find that

col
(
D∆(Φ)

)
=
[(

Y>nYn + X>X
)
⊗ IN

]
col(∆)

+
[
Y>n ⊗Yn

]
col
(
∆>
)

+
([

I3 ⊗
(
YnY>n − C

)]
col(∆)

)
. (55)

To write this as a single linear system in col(∆), let Eij ∈ RN×3 be an elementary
matrix, which has a one in the ijth position and zeros elsewhere, and let P ∈ R3N×3N

be a permutation matrix whose columns are

P =
[

col(E11), . . . , col(E13), col(E21), . . . , col(EN3)
]
.

It follows that col(∆>) = P col(∆) (see, e.g., [14]), and hence Kn is given by

Kn =
[
Y>nYn + X>X

]
⊗ IN +

[
Y>n ⊗ Yn

]
P + I3 ⊗

[
YnY>n −C

]
. (56)

Once col(∆n) = −K−1
n col(Φ(Yn)) has been obtained by standard numerical methods,

it is easily put back into the desired increment matrix ∆n.
The convergence of this iteration would be greatly improved if there were an

inexpensive method of generating good starting matrices Y0. If ‖G0‖1 � γ− (see
equation (46)), then we can assume B = 0 to a good approximation, in which case the
γk will be close to the three largest eigenvalues of C and we can use Y0 = ŶΓ1/2,
where the columns of Ŷ are the corresponding eigenvectors. If ‖C‖1 � λmin(G0),
then we can simply set Y0 = VG−1

0 . More general procedures for finding good
starting matrices, and searching the space for the global optimum, will be presented
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later on. The Newton–Kantorovitch method has the advantage of being robust and easy
to implement; it has the disadvantage of being relatively inefficient since it requires
the repeated solution of a 3N × 3N system of linear equations.

5.2. Cayley parametrization of the inertial equations

In this section we construct a method for solving equations (20)–(21) for the
eigenvalues γ1, γ2, γ3 and eigenvectors r1, r2, r3 of the inertial tensor. This method
is based on Cayley representation of an orthogonal matrix [1], which is possibly the
simplest way to parametrize a rotation. Consider a real vector ω and the associated
3× 3 skew-symmetric matrix:

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (57)

The Cayley transform is a rational matrix function which maps Ω into an orthogonal
matrix R:

R = (I−Ω)/(I + Ω). (58)

If ‖ω‖ =
√
ω2

1 + ω2
2 + ω2

3, the eigenvalues of R are given by{
1,

1 + ι‖ω‖
1− ι‖ω‖ ,

1− ι‖ω‖
1 + ι‖ω‖

}
,

which shows that R is a proper orthogonal matrix, or rotation. The mapping ω → R
is a bijection whose inverse is given by

Ω = (I− R)/(I + R) (59)

whenever R is a rotation. By using the Cayley parametrization, we (a) eliminate all
six constraints in equation (21) and hence reduce the total number of variables from
twelve to six, and (b) have an efficient way of computing the vector ω for any given
rotation matrix (cf. equation (59)).

In constructing R from the three eigenvectors r1, r2, r3, their arbitrary orientation
causes an ambiguity in the values of ω. There are eight possible orientations, but four
of these are eliminated since they result in det(R) = −1. Among the remaining
four, we shall always choose the one that maximizes tr(R), because (a) it results in
the smallest magnitude of ‖ω‖, and (b) improves the condition number of the matrix
division in equation (59).

Appending the three rotational parameters ω1, ω2, ω3 to the three eigenvalues γ1,
γ2, γ3, we form a vector of parameters p ∈ R6, and then write the system of equations
(20) in vector form

g(p) =
[
g11(p)g22(p)g33(p)g12(p)g13(p)g23(p)

]>
= 0. (60)
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Starting from a parameter vector p0, Newton’s method for the system of equations
(60) is given by pn+1 = pn − J−1

n · gn, where gn = g(pn) is the function vector and
Jn = ∂g/∂p|pn is the Jacobian matrix evaluated at pn.

The partial derivatives of equation (60) with respect to the Cayley parameters
ω1, ω2, ω3 are computed as follows. Let ∆m = ∂Ω/∂ωm, m = 1, 2, 3, be the three
directional derivative matrices of Ω, i.e.,

∆1 =

[ 0 0 0
0 0 −1
0 1 0

]
, ∆2 =

[ 0 0 1
0 0 0
−1 0 0

]
, ∆3 =

[ 0 −1 0
1 0 0
0 0 0

]
. (61)

Upon differentiating the expression (I + Ω)(I + Ω)−1 = I with respect to ωm, we get

∆m(I + Ω)−1 + (I + Ω)
∂

∂ωm
(I + Ω)−1 = 0,

or

∂

∂ωm
(I + Ω)−1 = −(I + Ω)−1∆m(I + Ω)−1. (62)

We now substitute equation (62) into

∂R
∂ωm

= (I−Ω)
∂

∂ωm
(I + Ω)−1 − ∆m(I + Ω)−1,

simplify it and obtain

∂R
∂ωm

= −2(I + Ω)−1∆m(I + Ω)−1. (63)

The three directional derivative matrices, ∂R/∂ωm, contain all nine derivative vectors
∂rk/∂ωm (1 6 k,m 6 3) and, as the columns of a rotation matrix, they are considered
independent of the γk variables.

Since the vector rk lies on the intersection curve r(γk) by lemma 3, one might ask
why we ignore dependence of rk on γk? The answer is that when we determine three
unit vectors during the global search that approximately satisfy the nonlinear system of
equations (60), they are only approximately orthogonal. Therefore, the inverse Cayley
transform (equation (59)) results in an approximately skew-symmetric matrix Ω̃. When
we skew-symmetrize it, according to Ω = (Ω̃− Ω̃>)/2, in order to generate the three
correct rotation parameters from which to start Newton’s method, the corresponding
rotation matrix R has columns that do not lie any longer on the original intersection
curves (generated by the γk) but are only in their vicinities. The result is that the terms
containing dr(γk)/dγk|rk can not be accurately calculated and hence they are omitted
from equations (64) below. The price for this simplification of Jacobian matrix is that
the convergence rate is somewhat less than quadratic.
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Therefore the formulae for the entries of the Jacobian matrix take on a relatively
simple form, namely,

∂gkk
∂γk

= 1 + 2r>k
[
G0 + W>

(
[γkI− Σ]−3)W]rk, 1 6 k 6 3,

∂gkl
∂γk

= −r>k
[
G0 + W>

(
[γkI− Σ]−2[γlI− Σ]−1)W]rl, 1 6 k < l 6 3.

(64)

Finally, by equations (18)–(19), S(γk, γl)→ S(γk) as γl → γk, so that

∂gkl
∂ωm

=

[
∂rk
∂ωm

]>
S(γk, γl)rl +

[
∂rl
∂ωm

]>
S(γk, γl)rk, 1 6 k 6 l 6 3. (65)

The rest of the entries are equal to zero.

5.3. Angular parametrization of the inertial equations

An alternative parametrization which reduces equations (20)–(21) to a system of
six equations in six unknowns uses the three eigenvalues γk together with the three
angles ψk defined in equation (30), one for each intersection curve r(γk). For any three
values of γk (satisfying the intersection condition (27)) and any three values of ψk ∈
[0, 2π), the three unit vectors r(γk ,ψk) satisfy the three quadratic equations (20) and
the three normalizing conditions in equations (21), but are not necessarily orthogonal.
Conversely, for each column vector rk on the intersection curve r(γk) the corresponding
angular parameter ψk is uniquely determined by equations (29)–(31).

If we denote the parameter vector q = [γ1 ψ1 γ2 ψ2 γ3 ψ3]>, then the remaining
three equations (20) can be written as

h1(γ1,ψ1, γ2,ψ2) ≡ r>(γ1,ψ1)S(γ1, γ2)r(γ2,ψ2) = 0,

h3(γ2,ψ2, γ3,ψ3) ≡ r>(γ2,ψ2)S(γ2, γ3)r(γ3,ψ3) = 0,

h5(γ3,ψ3, γ1,ψ1) ≡ r>(γ1,ψ1)S(γ1, γ3)r(γ3,ψ3) = 0,

(66)

while the three orthogonality conditions in equations (21) become

h2(γ1,ψ1, γ2,ψ2) ≡ r>(γ1,ψ1)r(γ2,ψ2) = 0,

h4(γ2,ψ2, γ3,ψ3) ≡ r>(γ2,ψ2)r(γ3,ψ3) = 0,

h6(γ3,ψ3, γ1,ψ1) ≡ r>(γ1,ψ1)r(γ3,ψ3) = 0.

(67)

This completes the description of the system of equations.
We now illustrate the computation of the entries of the Jacobian matrix by pre-

senting only the partial derivatives for the functions h1 and h2 with respect to γ1
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and ψ1. The remaining derivatives have the same form apart from index permutation.
The partial derivatives with respect to ψ1 are straightforward:

∂h1

∂ψ1
=
∂r>(γ1,ψ1)

∂ψ1
S(γ1, γ2)r(γ2,ψ2),

∂h2

∂ψ1
=
∂r>(γ1,ψ1)

∂ψ1
r(γ2,ψ2),

(68)

because r(γ2,ψ2) does not depend on ψ1. The partial derivative of the curve r(γ1,ψ1)
with respect to ψ1 is obtained via equations (29)–(31) as

∂r(γ1,ψ1)
∂ψ1

= U(γ1)

∂ξ1/∂ψ1

∂ξ2/∂ψ1

∂ξ3/∂ψ1

 = U(γ1)


−β1 sin(ψ1)
β2 cos(ψ1)

(β2 − β1) cos(ψ1) sin(ψ1)
ξ3

 (69)

if, for example, the axis of symmetry is u3.
The partial derivatives of h1 and h2 with respect to the eigenvalue γ1 are more

complicated. They depend on the derivatives of the spectral decomposition of the
matrix Q(γ) = S(γ)/γ (see section 4.1). The derivatives of the eigenvalues and eigen-
vectors of a matrix-valued function of a scalar argument have been rediscovered many
times, see, e.g., [2,19] and references therein. In physics, the eigenvalue derivatives
are implicit in the Hellmann–Feynman theorem [6], but the eigenvector derivatives
appear to be much less widely known. For this reason we include a brief derivation
of these derivatives for the case of a symmetric (or hermitian) matrix.

Assuming that Q(γ) = U(γ)Λ(γ)U>(γ) is a continuously differentiable symmetric
matrix function in some domain, its derivative with respect to γ is

Q′ = U′ΛU> + UΛ′U> + UΛU′>.

The relation U>U = I implies (U>U′)> = −U>U′ and hence

Λ′ + [Λ, M] = U>Q′U, (70)

where the square brackets denote the matrix commutator, and the matrix M = −U>U′

is variously known as the Cartan matrix, logarithmic derivative, or multiplicative deriv-
ative of U> [12]. Since the commutator of any matrix with a diagonal one has zeros
on its diagonal, it follows that

Λ′ = diag
(
U>Q′U

)
. (71)

The matrix U>Q′U is symmetric (though not diagonal, because [Q, Q′] 6= 0), which
implies that the commutator [Λ, M] is symmetric too. Thus the entries mij are obtained
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by simply writing out the off-diagonal entries in equation (70) and then solving the
resulting (scalar) linear equations, namely,

mij = −u>i u′j =
u>i Q′uj
λi − λj

(i 6= j). (72)

Finally, the eigenvector derivatives are computed from U′ = −UM. When λi = λj
for a particular value of γ, a further analysis is required which we shall not pursue,
because this case has not occurred in the applications of interest here.

Given the eigenvalue and eigenvector derivatives of Q(γ), the functions h1 and
h2 are differentiated with respect to γ1 as follows:

∂h1

∂γ1
=

(
∂r>(γ1,ψ1)

∂γ1
S(γ1, γ2) + r>(γ1,ψ1)

∂S(γ1, γ2)
∂γ1

)
r(γ2,ψ2),

∂h2

∂γ1
=
∂r>(γ1,ψ1)

∂γ1
r(γ2,ψ2).

(73)

The matrix derivative in equation (73) is simply

∂S(γ1, γ2)
∂γ1

= −W>
([
γ1IN − Σ

]−2[
γ2IN − Σ

]−1)W, (74)

while the partial derivative of the intersection curve with respect to γ1,

∂r(γ1,ψ1)
∂γ1

=
dU(γ1)

dγ1
ξ(γ1,ψ1) + U(γ1)

∂ξ(γ1,ψ1)
∂γ1

, (75)

requires the matrix dU(γ1)/dγ1 (obtained via equation (72)), and the partial derivative
vector ∂ξ/∂γ1. The latter depends on the ordinary derivatives of the projected semiaxes
(see equation (29)), for example,

dβi
dγ1

=


(1− λ2)λ′1 + (λ1 − 1)λ′2

2βi(λ1 − λ2)2 if λ2 < 1,

(1− λ3)λ′1 + (λ1 − 1)λ′3
2βi(λ1 − λ3)2 if λ2 > 1,

(76)

which in turn depend on the eigenvalue derivatives λ′m = dλm/dγ1 (see equation
(71)). Thus, the expression for ∂ξ/∂γ1 is derived by using equations (29), (30), (71)
and (76).

6. The search for the global minimum

6.1. An overview of the search strategy

All three variations on Newton’s method in section 5 may diverge if they are not
started sufficiently close to a solution. In this regard, the Newton–Kantorovitch method
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tends to be superior to the other two, but it requires the solution of a 3N ×3N system
of linear equations at each iteration, whereas the two based on the inertial equations
require the solution of only a 6 × 6 system. Furthermore, due to the existence of
several solutions, none of these methods can be expected to find, on its own and with
any degree of reliability, the global minimum of the STRAIN f , which is what interests
us the most.

For this reason we have developed a search procedure that is capable of finding
all solutions to the inertial equations in the subspace defined by the bounds established
in section 4. The global minimum is then easily found by constructing the associated
critical matrices via equation (25), evaluating the function f at each, and selecting the
minimal one. Numerical evidence gathered over numerous problems of size M+N <
200 indicates that the number of such critical matrices rarely exceeds a dozen or so,
and hence this search is generally quite efficient. The procedure as a whole consists
of four stages.

In the first stage, the two γ-intervals defined by the bounds

γ1 ∈
(

max
(
σ1,λmax(G0)

)
, γ+

)
and γ2, γ3 ∈ (γ−, γ+

2 ) are discretized subject to a given curve length increment cri-
terion with a deliberately increased discretization density in the vicinity of poles and
bifurcation points. The outcome is two nonuniform discrete sequences, or meshes,
one for γ1, the other shared by both γ2, γ3. This stage of the algorithm takes a small
fraction of the overall time.

The main idea comes from lemma 3, which states that each discrete value of γ1

in its range defines a unique intersection curve r(γ1) which contains all solutions r to
the first inertial equation γ1 − r>S(γ1)r = 0. By discretizing this curve, as described
in section 6.2, we generate a discrete set of all inertial pairs {γ1, r1} at fixed γ1. We
shall do that for each curve defined by the γ1-mesh and so obtain a sample covering
the portion of the unit sphere of interest. The discretization process for the γ-intervals
is described in section 6.3 below.

The second stage systematically generates a discrete set of trial solutions over
the γ-meshes, where each trial solution consists of three distinct inertial pairs. Each
trial solution is tested to see if it satisfies the three bilinear inertial equations (20) to
within a given threshold, and if so, it is appended to a list of initial solutions. These
generation and elimination processes are described in section 6.4. This stage of the
algorithm may take a significant portion of the overall time, and is problem dependent.

The third and the fourth stage operate together as follows: each initial solution
from the list is refined by means of one of the three versions of Newton’s method
derived in section 5. In the case of convergence, the function f is evaluated at this
new critical matrix and inserted into an ordered list of the function values already
found, provided it is different from them. These two final stages of the algorithm are
proportional to the number of initial points generated in the second stage, and may
also take significant portion of the overall time.
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6.2. Discretization of the intersection curves

For any given γ1 in the mesh over the interval in equation (35), let r(γ1,ψ1) be
an intersection curve parametrized by ψ1. We choose as our criterion for discretizing
it a fixed spherical distance ∆θ between successive points along the curve, namely,

r>
(
γ1,ψk1

)
r
(
γ1,ψk+1

1

)
= cos(∆θ). (77)

Since we will be dealing in this section with a single fixed value of γ1, we shall omit
the subscript from ψk1 and the dependence on γ1 altogether, denoting the points on the
intersection curve simply by r(ψk). The problem then is to find a discrete sequence
of parameters {ψk}mk=1 satisfying equation (77).

Due to the double symmetry of the intersection curve (see section 4.1), it is
sufficient to consider only the interval [0, π/2], and find a subsequence of parameters
0 = ψ0 < ψ1 < · · · < ψm/4 = π/2 satisfying (77). The complete sequence is then
obtained by reflecting and copying this subsequence to obtain exactly m points, as
follows: {

ψ0, . . . ,ψm/4,π − ψm/4−1, . . . ,π − ψ0,

π + ψ1, . . . ,π + ψm/4, 2π − ψm/4−1, . . . , 2π − ψ1}. (78)

Suppose we have found points ψ0, . . . ,ψk satisfying equation (77), and such that
ψk < π/2. Finding the next point means solving the equation

r>(ψk)r(ψk + δψ) = cos(∆θ) (79)

for the increment δψ. While it is certainly possible to solve equation (70) at each step
to full working precision, the final parameter will in general exceed π/2. If the last
parameter is reset to π/2, then the last spherical distance may significantly differ from
others. A slight redistribution of the points, on the other hand, would accommodate
for this nonuniformity but then some of the work in getting the exact solution would
have been wasted. A way out of this situation comes from the following argument.
Consider the derivative of the arc length of the intersection curve with respect to the
parameter ψ, i.e.,

s′(ψ) =

√√√√β2
i sin2(ψ)− β2

j (β2
i − cos2(ψ))

1− β2
i cos2(ψ)− β2

j sin2(ψ)
, (80)

which is obtained from s′(ψ) =
√

(ξ′1(ψ))2 + (ξ′2(ψ))2 + (ξ′3(ψ))2 and the derivatives of
equation (30), where 0 < βi,βj < 1 are the semi-axes of the projected ellipse. A quick
analysis shows that s′(ψ) is a periodic function with period π, which is monotone on
the intervals [0,π/2] and [π/2,π], but with different monotonicity on latter due to the
reflection s′(ψ) = s′(π−ψ) in π/2. Thus, s′(ψ) attains its extremal values min(βi,βj)
and max(βi,βj) at the points 0 and π/2. Since the arc length between any two points
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on a continuous spherical curve is bounded from below by their spherical distance, we
see that

∆θ= acos
(
r>(ψk)r(ψk + δψ)

)
6 δsk

=

∫ ψk+δψ

ψk
s′(ψ) dψ 6 max(βi,βj)δψ. (81)

It follows that ∆θ/max(βi,βj) is a lower bound on all the parametric increments
δψ satisfying equation (79). Locally, however, a better approximation is given by
δψ ≈ ∆θ/s′(ψk). The following discretization algorithm is based on this idea:

set: ψ0 = 0, k = 0
while (ψk < π/2)

δψk = ∆θ/s′(ψk)
ψk+1 = ψk + δψk

k = k + 1
end

(82)

Upon exiting the while loop, we set m = 4k and then correct for any “overshoot”
ψm/4 > π/2 by rescaling the sequence of increments δψk using the relative scale
η = π/(2ψm/4). This means that a new sequence of angles is generated by ψk =
ψk−1 + δψk−1η for k = 1, . . . ,m/4.

This algorithm produces sequences that are approximately uniform according to
the criterion in equation (79). In addition, we make sure that it slightly oversamples the
interval by starting the sequence from the point with the maximum derivative of the arc
length, i.e., ψ0 = 0 if βi 6 βj or ψ0 = π/2 if βi > βj , since then s′(ψk) > s′(ψk+1).
In the last case, we first subtract π/2 from the computed subsequence before reflecting
and copying as in equation (78).

6.3. Discretization of the γ intervals

In order to discretize the two γ intervals, (max(σ1,λmax(G0)), γ+) and (γ−, γ+
2 ),

we need a suitable definition of the distance between two consecutive nested curves
r(γi) and r(γi+1). We have considered a number of such definitions, e.g., the Hausdorff
distance and several of its approximations, or the half-angle χ(γ) of the enveloping
cone, but they resulted in either too many points, or are not sufficiently sensitive in the
regions of fast variation of an intersection curve such as the tangency and bifurcation
points.

It is these considerations that led us to consider the length of an intersec-
tion curve 0 6 L(γ) 6 2π as a quantity which is continuous, and inherits the
behavior of both βi(γ) and βj(γ). Furthermore, if there is a bifurcation point
γb ∈ (max(σ1,λmax(G0)), γ+), then L(γ) is a monotonically increasing function on
the interval γ ∈ (max(σ1,λmax(G0)), γb), and a monotonically decreasing one on
the interval γ ∈ (γb, γ+), with its maximum attained at the bifurcation point. In
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spite of the jump discontinuity in the values of βi(γ) and βj(γ) across γb, when we
evaluate arc length derivatives in equation (80) on both sides of γb, we find that
s′(γ−b ,ψ) = s′(γ+

b ,ψ) = 1 for all ψ, confirming that maxγ(L(γ)) = L(γb) = 2π. The
derivative L′(γ) is also well defined, except at the tangency points where L(γt) = 0
and L′(γt) = ±∞ due to a square root type singularity. At a bifurcation point we have

lim
γ→γ+

b

(
L′(γ)

)
= 0,

lim
γ→γ−

b

(
L′(γ)

)
= 0.

(83)

The length of an intersection curve is obtained by integrating the expression in
equation (80) (which really is the partial derivative s′ = ∂s(γ,ψ)/∂ψ) and taking
advantage of its double symmetry, i.e.,

L(γ) = 4
∫ π/2

0

∂s(γ,ψ)
∂ψ

dψ. (84)

For dL/dγ we calculate the mixed partial derivative of s(γ,ψ), so that

dL
dγ

= 4
∫ π/2

0

∂2s(γ,ψ)
∂γ∂ψ

dψ. (85)

The interchange of integration and partial differentiation is permissible for any re-
gion not containing the points γb, γt, σi. Both integrals are evaluated using standard
Romberg quadrature and the analytic expressions for ∂s(γ,ψ)/∂ψ (see equation (80))
and ∂2s(γ,ψ)/(∂γ ∂ψ) (equations (71), (76) and (80)). The maximal number of inter-
val halvings rarely exceeded seven for double precision accuracy.

In many ways the γ-discretization can be made similar to the ψ-discretization.
This means that if we specify the length difference between two consecutive curves,
namely ∆L = 2π/m for some m > 1, then instead of solving the nonlinear equation

L(γk + δγ)− L(γk)− ∆L = 0 (86)

exactly for the next increment δγ, we use an approximate version of equation (86),
namely,

γk+1 = γk +
∆L

L′(γk)
. (87)

This will generate a decreasing sequence γk, providing it starts slightly to the left of
γ+ (to avoid division by −∞), and ending slightly to the right of max(σ1, γb) (to avoid
division by zero). In the case that σ1 < γb we continue generating the sequence of γk

using the same equation (87), but with negative ∆L since the lengths are decreasing.
As before, we start it slightly to the left of γb, and end it slightly to the right from
σ1. A small interval around a bifurcation point is discretized more densely in order to
capture small or ill-conditioned intersection curves that are associated with them.
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As mentioned earlier, when a bifurcation point is close to a pole, it often gen-
erates in its vicinity very thin intersection curves that appear as very narrow cuts on
the unit sphere. Two kinds of problems occur in the presence of such an ill condi-
tioned geometry: (a) the search process is not able to locate relevant initial solutions,
and (b) Newton’s method tends to diverge more frequently. We therefore increase
the density of the γ-mesh in an inversely proportional manner to the eccentricity
min(βi/βj ,βj/βi) in any region where this number drops below a given threshold.
This mitigates the aforementioned difficulties.

6.4. Elimination criteria for the global search

We recall that for each γ1 ∈ (max(σ1,λmax(G0)), γ+) and for each ψ1 ∈ [0, 2π),
the inertial pair γ1, r1 = r(γ1,ψ1) satisfies the first inertial equation r>1 S(γ1)r1 = γ1.
There are five more equations left to solve but only three variables, since we have
fixed γ1 and fixing the unit vector r1 eliminates two degrees of freedom. Two of these
remaining variables are γ2 and γ3, while the third is chosen to be the angle φ in the
plane orthogonal to r1 in which r2 and r3 must lie in order to form an orthonormal
frame. Let N = [n1, n2] be any 3 × 2 matrix such that [r1, n1, n2] forms a proper
orthonormal frame. Then the vectors r2, r3 are expressed as

r2 = n1 cos(φ) + n2 sin(φ) = Nt2,

r3 = −n1 sin(φ) + n2 cos(φ) = Nt3,
(88)

where t>2 = [cos(φ),σ(φ)] and t>3 = [− sin(φ), cos(φ)] are evidently orthonormal
plane vectors. We now rewrite the remaining two quadratic inertial equations in equa-
tions (20) in terms of this new angular variable φ as

t>2 (φ)N>S(γ2)Nt2(φ) = γ2,

t>3 (φ)N>S(γ3)Nt3(φ) = γ3.
(89)

These two equations differ only by the subscripts on γ and t, and thus the solutions
{γ,φ} to one of them are also the solutions to the other (recall that γ2, γ3 share
the same domain as well as mesh). The same observation holds for the two bilinear
equations g12, g13: they are identical, apart from the same two subscripts, namely,

r>1 S(γ1, γ2)Nt2(φ) = 0,

r>1 S(γ1, γ3)Nt3(φ) = 0.
(90)

These facts, which are a consequence of the formal symmetry of the system of equa-
tions (20), provide for considerable economy of effort. In the following analysis of
these equations, therefore, we shall replace the subscript 2 or 3 with t whenever the
same argument applies equally to both of the equations in (89) or (90).

The 2 × 2 matrix N>[S(γt)/γt]N in equation (89) determines an ellipse, which
is obtained by intersecting the ellipsoid (defined by S(γt)/γt) with the central plane
spanned by [n1, n2]. Therefore the solutions of equation (89) are the intersections of
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the intersection curves (between the ellipsoid and the unit sphere) with the plane N.
This is clearly a triple surface intersection problem, made considerably easier by the
central symmetry of all three surfaces. Such an intersection exists if and only if the
eigenvalues µmin(γt) and µmax(γt) of N>[S(γt)/γt]N satisfy

µmin(γt) 6 1 6 µmax(γt). (91)

Note also that, by the Rayleigh quotient argument, the inequalities

λ3
(
S(γt)/γt

)
6 n>

[
S(γt)/γt

]
n 6 λ1

(
S(γt)/γt

)
hold for any unit vector n, and in particular for n = Np, where p is any unit vector
in the plane. This shows that λ3 6 µmin and µmax 6 λ1, so it is quite possible for the
intersection curves not to intersect a given plane N, and hence it is always necessary
to check the inequalities in equation (91) directly.

Let P = [pmin, pmax] be the eigenvectors of N>[S(γt)/γt]N corresponding to the
eigenvalues µmin, µmax. When the intersection condition (91) holds, the two exact
intersection points for equation (89) are given by

t± = Pm±, m± =
1√

µmax − µmin

[ √
1− µmin

±
√
µmax − 1

]
. (92)

Their negatives, −r± = −Nt±, are also intersection points but, as we have seen, they
are redundant in the sense that they give rise to the same critical matrices of f , and
hence need not be considered.

The above arguments can be restated as follows: for any fixed inertial pair
{γ1, r1} and any γt taken from its mesh, either there are no solutions (criterion (91)
is not satisfied) or else two solutions r± are calculated from equations (88) and (92).
We now subject both solutions to the first test, based on the bilinear equation (90) and
an orthogonality threshold ε⊥, i.e.,∣∣r>1 S(γ1, γt)r±

∣∣ < ε⊥
∥∥S(γ1, γt)

∥∥
1. (93)

This means that if an inertial pair {γt, rt} satisfies this inequality, then it is an approx-
imate solution to g12(γ1, r1, γt, rt) = 0 as well as an exact solution to the quadratic
equation gtt(γt, rt) = 0. Each inertial pair {γt, rt} that satisfies this test is appended
as {γl, rl} to a temporary list LT (associated with a single {γ1, r1}), which will be
used in the next step of the search.

In this next step, two additional tests are applied to each pair of elements
{γl1 , rl1}, {γl2 , rl2 } from the list LT . First, we check that the pair of vectors is
approximately orthogonal, i.e., (

rl1
)>rl2 < ε⊥. (94)

Second, we check that each pair that passes test (94) also approximately satisfies the
last inertial equation, i.e., ∣∣r>2 S(γ2, γ3)r3

∣∣ < ε⊥
∥∥S(γ2, γ3)

∥∥
1, (95)
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where γ2 = max(γl1 , γl2), γ3 = min[γl1 , γl2 ] and r2, r3 are the corresponding vectors
from the list LT . Each pair of inertial pairs that pass the last two tests is then appended,
together with {γ1, r1}, to a list LI = {γi1, ri1; γi2, ri2; γi3, ri3} of initial (approximate)
solutions for Newton refinement.

In the third stage of the search, one of the two versions of Newton’s method
(presented in the sections 5.2 and 5.3) for solving the inertial equations is run on each
of the initial solutions in the list LI . The performance obtained with both of these
methods is comparable, but the method based on the Cayley parameters is a bit faster
and easier to implement, and is the method used in the examples presented in the next
section.

In our implementation Newton’s method we have imposed a damping factor
on the step size during the first few iterations to reduce the frequency of diverging
runs. Each time this iteration converges to a solution, we convert the solution into
the corresponding critical matrix Y via equation (25), and then evaluate f (Y) via
equation (15). If this value is not already on the final list LC , it is inserted there. The
critical matrix with the smallest value of the STRAIN is taken as the global minimum.

It may happen that the initial γ-discretizations and the choice of ε⊥ did not
result in any initial solution, or resulted in too many. Furthermore, it may happen
that Newton’s method did not converge for any initial point, or converged too often
to the same solution. These cases are controlled by starting with a relatively large
ε⊥ and a relatively course discretization density for the γ-mesh. Then, either ε⊥ is
reduced, or the γ-mesh refined, or both, to ensure finding the global minimum without
an excessive amount of redundant computation.

7. Numerical experiments

The code implementing the global search procedure described in this paper was
developed using the interactive MATLABr numerical linear algebra system, and then
converted into an independent ‘C’ program for a significantly faster execution. We have
evaluated the resulting program on two kinds of test problems, one using randomly
generated coordinates, and the other generated from the coordinates of structures in
the Protein Data Bank (PDB). The procedures used to generate these test problems,
and the results obtained with them, are the subject of this section.

7.1. Random test problems

The procedure used to generate random test problems is as follows: First, the
coordinates of X ∈ RM×3 and Y ∈ RN×3 are chosen with a uniform distribution from
within two balls centered at cX , cY ∈ R3 with radii rX , rY > 0. Second, both sets of
points are translated to the centroid of X by subtracting the vector x̄ = −M−1∑

i xi.
Third, the inertial tensor of the X coordinates is diagonalized as X>X = LZL>

(Z = diag(ζ1, ζ2, ζ3) and ζ1 > ζ2 > ζ3), and both the X and Y coordinates are rotated
by L so as to obtain principal axis coordinates for X. Finally, the coordinates of both
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X and Y are scaled by ζ
−1/2
1 , so as to equalize the norm of X>X across different

problems.
The matrices of squared distances, i.e.,

DA =
[
DA
ij

]M ,M
i,j=1 =

[
‖xi − xj‖2]M ,M

i,j=1,

DB =
[
DB
ij

]M ,N
i,j=1 =

[
‖xi − yj‖2]M ,N

i,j=1, (96)

DC =
[
DC
ij

]N ,N
i,j=1 =

[
‖yi − yj‖2]N ,N

i,j=1,

are then calculated from these coordinates, and their elements perturbed by uniformly
distributed random numbers 1 + ϑij as follows:

D̃B =
[
D̃B
ij

]M ,N
i,j=1 ≡

[
(1 + ϑij)2DB

ij

]M ,N
i,j=1

(
ϑij ∈ (−εB , εB)

)
,

D̃C =
[
D̃C
ij

]N ,N
i,j=1 ≡

[
(1 + ϑij)2DC

ij

]N ,N
i,j=1

(
ϑij ∈ (−εC , εC)

)
.

(97)

We stress that these perturbed distance matrices can no longer be embedded in a
three-dimensional Euclidean space.

In order to have the blocks of the corresponding Gram matrices A, B and C refer
to a common origin and at the same time ensure that A = XX> is fit exactly, it is
necessary place the origin in the X set, preferably at its centroid as above. This can
be done directly from the distances by assigning unit mass to all the X coordinates,
and zero to the Y coordinates. Equation (4) then yields

DA
0i =

1
M

M∑
j=1

DA
ij −

1
M2

M ,M∑
1=j<k

DA
jk (i = 1, . . . ,M ),

D̃C
0i =

1
M

M∑
j=1

D̃B
ij −

1
M2

M ,M∑
1=j<k

DA
jk (i = 1, . . . ,N ).

(98)

Finally, we set A = XX> and

B =
[(
DA

0i + D̃C
0j − D̃B

ij

)
/2
]M ,N
i,j=1,

C =
[(
D̃C

0i + D̃C
0j − D̃C

ij

)
/2
]N ,N
i,j=1.

(99)

Thus the free parameters that define our test problems include the dimensions M
and N of X and Y, the ratio of distance between the centers of the spheres to the sum
of their radii, sXY = ‖cX − cY ‖/(rX + rY ), and the perturbation magnitudes εB and
εC . In the problems reported below, we set {M = 10,N = 50}, {M = N = 30}
and {M = 50,N = 10} with rX = M1/3 and rY = N1/3, so as to keep the density
approximately constant in each case. In addition, we set sXY = 0, sXY = 1/2 and
sXY = 1 for each of these three cases, as well as εB = εC = ε for three perturbation
levels, ε = 0.005, 0.05, 0.5. We generate and solve ten random problems in each class,
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Table 1
Statistics for random test problems (see text).

ε (%) M , N sXY (a) (b) (c) (d) (e) (e) (g)

0.5 50, 10 0.0 8, 29 58 5836 4959 1.0 0.0000 672
0.5 50, 10 0.5 22, 45 219 2234 1270 1.0 0.0002 315
0.5 50, 10 1.0 22, 68 199 4136 2010 1.0 0.0007 554
0.5 30, 30 0.0 25, 43 218 2563 623 1.0 0.0003 485
0.5 30, 30 0.5 21, 72 161 4026 931 1.1 0.0012 615
0.5 30, 30 1.0 21, 71 140 5001 641 1.1 0.0077 515
0.5 10, 50 0.0 22, 91 70 6532 743 3.2 0.0248 838
0.5 10, 50 0.5 21, 90 43 6755 725 4.2 0.0514 813
0.5 10, 50 1.0 21, 84 35 6817 874 2.4 0.1443 1018

5.0 50, 10 0.0 12, 31 65 5094 4144 1.0 0.0022 533
5.0 50, 10 0.5 25, 46 290 766 439 1.0 0.0207 127
5.0 50, 10 1.0 24, 69 253 2431 1180 1.1 0.0726 303
5.0 30, 30 0.0 33, 43 320 1984 514 1.0 0.0273 410
5.0 30, 30 0.5 24, 83 183 5997 650 1.2 0.1340 803
5.0 30, 30 1.0 24, 86 152 5587 881 1.2 0.8100 599
5.0 10, 50 0.0 24, 96 146 5828 430 3.2 2.1188 698
5.0 10, 50 0.5 24, 89 76 6123 880 2.9 7.7206 699
5.0 10, 50 1.0 24, 95 47 6246 731 2.8 10.038 821

50.0 50, 10 0.0 9, 31 67 6222 4630 1.0 0.2135 713
50.0 50, 10 0.5 22, 44 221 2440 1460 1.0 1.8616 325
50.0 50, 10 1.0 22, 66 219 2989 1333 1.0 7.0796 394
50.0 30, 30 0.0 35, 49 285 3235 728 1.0 5.2963 655
50.0 30, 30 0.5 21, 70 192 5177 537 1.1 18.166 696
50.0 30, 30 1.0 21, 69 136 5771 1542 1.2 82.830 780
50.0 10, 50 0.0 21, 89 78 6395 411 3.7 203.86 759
50.0 10, 50 0.5 21, 98 38 6892 1003 3.0 471.46 842
50.0 10, 50 1.0 21, 103 45 6850 782 3.5 1292.1 901

so that the total number of random problems is 10×3×3×3 = 270. All problems were
initialized with an arc length increment of ∆L = π/6 (for the sequence of intersection
curves) and an orthogonality threshold of ε⊥ =

√
1/2 asin(π/6).

For each of the 27 classes of problems, we report the average over the 10 problems
solved of: (a) the number of discretized points generated for γ1 and for γ2; (b) the total
number of unit vectors r1 generated on the intersection curves for entire γ1-mesh; (c)
the number of initial points to which Newton’s method was applied; (d) the number of
points for which Newton’s method converged; (e) the number of distinct solutions to the
inertial equations located; (f) the minimum function value found; (g) the CPU time re-
quired for the entire procedure (in seconds). These statistics are summarized in table 1.

It may be seen that the number of critical matrices found (e) was usually just
one, the exception being those problems in which Y contained more points (50) than
X (10), where it averaged about four. The relatively small number of critical matrices
satisfying bounds is of course what makes the global search feasible. We observed that
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the upper bound γ+ and the lower bound γ− were quite tight, in that their values at the
global minimum were usually within a few percent of these bounds. The upper bound
γ+

2 , however, was sometimes several times too large, particularly in the sXY = 1
cases. We also computed the standard deviations for all the averages given in table 1
(not shown). The standard deviations in the number of approximate solutions found
(c) and the number of times Newton’s method converged (d) were always comparable
to the averages for these quantities, and since these calculations consumed most of the
CPU time, the average times reported in (g) fluctuated widely even within a single
class of problem.

Numerical experience so far indicates that, with a moderately small discretiza-
tion step, the search procedure always succeeds in finding the global minimum of the
STRAIN. The difficulties encountered in an earlier version of the code, which occurred
when the global minimum lay in the immediate vicinity of a pole, tangency or bifur-
cation point, were eliminated by: (a) improvements in the discretization criterion; (b)
increasing the mesh density in the vicinity of such points; (c) decreasing the orthogo-
nality threshold ε⊥ and the discretization criteria for the γ1 and γ2 meshes whenever
a run failed to find any critical points.

7.2. Chemical test problems

For our chemical test problems, we used two biologically representative systems.
The first was the crystal structure of a complex of the enzyme dihydrofolate reduc-
tase (DHFR; entry 3DRC in the Brookhaven Protein Data Bank) with its inhibitor
methotrexate (MTX) [5]. Only the nonhydrogen atoms of one of the two molecules
in the asymmetric unit were used, which gave 33 MTX atoms for the unknown Y
coordinates, 1262 DHFR atoms for the fixed X coordinates. The second was the crys-
tal structure of a small protein, bovine pancreatic trypsin inhibitor (BPTI; entry 4PTI
in the Protein Data Bank), once again without hydrogen atoms [10]. In this case the
coordinates of the 284 backbone nitrogen, alpha-carbon, beta-carbon, carbonyl-carbon
and carbonyl-oxygen atoms were used for the X set, while the remaining 170 sidechain
atoms were used for the Y set.

In both cases the distance matrices were calculated from the coordinates in the
crystal structures, and those distances involving the chosen Y coordinates were per-
turbed. The Gram matrices B and C were generated from these perturbed distances
exactly as described for the random test problems above, but a somewhat different
procedure was used to perturb the distances. First, if the distance d was less than three
Ångstroms, it was used unchanged. Second, if the distance d was greater than three
Ångstroms, it was replaced by a uniform random number between max(3.0, d/

√
2)

and d
√

2. In the case of BPTI, this procedure generates random distance matrices like
those that would be used as input to the EMBED algorithm in a homology modeling
problem wherein only the backbone conformation of the protein was known. In the
case of DHFR/MTX, the procedure generates random distance matrices like those that
would be available if the structure of the protein was already known, and a number of
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Figure 5. Stereoview of the results of the DHFR/MTX test problems. The 10 MTX structures generated
are drawn with medium lines, while the DHFR protein is drawn with thin lines, and the MTX crystal

structure is a shaded stick drawing.

ligand-protein and ligand-ligand interatomic contacts had been independently identified
from NMR data.

The total number of random perturbations solved was 10 for both the DHFR/MTX
and the BPTI backbone/sidechains problems. The DHFR/MTX trials ran smoothly, and
although the number of approximate solutions found exceeded 6000 in all 10 trials,
Newton’s method converged better than 95% of the time to the same critical matrix
every time, which is therefore almost certainly the unique global minimum. A single
unique global minimum was also found in every case for BPTI, although Newton’s
method failed to converge much more often. This is due to the fact that γ2 was always
close to the bifurcation point γb, and the angle between the curves at γb was always
very small (cf. section 4.1). The time required for the BPTI problems ranged from 3
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Figure 6. Stereoview of the results of the BPTI test problems treating the backbone atoms as fixed and
the sidechain atoms as variable. The backbones of the computed structures have been superimposed on

that of the crystal structure, which is drawn with a heavy line for comparison.

to 15 minutes.
Figures 5 and 6 show the results of the DHFR/MTX and BPTI test problems.

Although a certain scatter is apparent in these coordinates, they are all very close to
the crystal structure coordinates from which the unperturbed distances were obtained.
This ability to correct for large (ca. 40%) but random perturbations in the distances
is what makes the minimization criterion (9) and the algorithm a powerful tool for
determination of structures. The figures also show that the perturbation procedure
introduced some bias away from the crystal structure, which is expected when a simple
uniform distribution is used for the perturbed distances [15]. How the procedure
performs with the estimated distances that are available in actual applications will be
the subject of a further study.
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8. Closing comments

In this paper we have given a precise mathematical statement of the problem
of embedding with a rigid substructure, derived necessary conditions for the global
minimum, developed a search strategy for finding it, and evaluated the resulting al-
gorithm on a realistic set of test problems. The rigid embedding problem, however,
is only one step in a longer sequence of calculations by which one generates atomic
coordinates that satisfy distance constraints. This means that in actual applications
it will be necessary to have methods of incorporating fixed atom constraints into the
other steps of the overall calculation. These include bound smoothing, the generation
of approximate distances from which to build the metric matrix for embedding, and
the optimization of the resulting coordinates.

It turns out that these steps are all relatively straightforward. Fixed atoms are
built into the bound smoothing and distance generation steps simply by setting the
distances among the fixed atoms to their known values. Similarly, the fixed atom con-
straints are incorporated into the optimization simply by eliminating their coordinates
from the list of variables to be used. A suite of programs derived from the DG-II
distance geometry program package [15] which incorporate these modifications will
be described elsewhere, along with their application to chemically and biologically
important problems [18].
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